Ученые ВолгГТУ разработали новую модель оценки остаточного ресурса работы генерирующего оборудования, позволяющую точно предсказать, когда оно выйдет из строя. Особенностью модели является гибридная структура, построенная на основе глубоких нейронных сетей – мощного инструмента искусственного интеллекта. Результаты исследования опубликованы в журнале “ACM Transactions on Cyber-Physical Systems”.
Генерирующим называют оборудование для производства энергии и используемое при организации автономного, аварийного или резервного электроснабжения. Специалисты объясняют, что вопрос надежности такого оборудования важен практически для всех предприятий топливно-энергетического комплекса. От этого зависит бесперебойное снабжение электричеством и теплом жителей городов, промышленных предприятий.
Несмотря на профилактическое техническое обслуживание (ТО), невозможно исключить внезапный выход оборудования из строя. Применение инструмента точного прогнозирования отказов может изменить подходы к ТО и ремонту. Также это существенно сокращает издержки от простоя оборудования.
“Техническое обслуживание, ориентированное на обеспечение безотказности, является общемировым трендом. Основная идея такого подхода — определение оптимального набора операций ТО и частоты их применения с учетом вероятностей и последствий отказов оборудования”, — объясняет заведующий кафедрой Систем автоматизированного проектирования и поискового конструирования Максим Щербаков.
В проведенном исследовании точность прогнозирования остаточного ресурса повысилась в 1,5 раза за счет выделения интервалов жизненного цикла оборудования и применения предложенной модели, отмечает Щербаков.
Модель основана на комбинации математических моделей, известных как глубокие нейронные сети. Нейронные сети – технология, копирующая работу центральной нервной системы и решающая сложные технические задачи, например, распознавание образов или, как в данном случае, прогнозирование отказов оборудования.
Существенный прогресс в использовании этих подходов в настоящее время обусловлен появившимися вычислительными возможностями, позволяющими обучать нейронные сети за относительно короткое время. В работе предложена новая конфигурация сети на основе сверточной нейронной сети и сети долгой краткосрочной памяти.
Дальнейшая задача научного коллектива – создать новую технологию, позволяющую не только прогнозировать отказы оборудования, но и формировать оптимальные решения – что конкретно необходимо сделать с оборудованием, чтобы продлить ресурс его использования.
Направление, в рамках которого проводится исследование, входит в стратегический проект ВолгГТУ в рамках программы “Приоритет-2030”. В программе развития вуза заложены четыре стратегических проекта, в том числе “Центр цифровых научно-образовательных проектов и разработок” и “Технологии для промышленного инновационного кластера”.
По информации: “РИА Новости”